
Sliced-scroll driven direct NVMe access for huge
data pagination

Ruo Ando#1
#National Institute of Informatics, Center for Cybersecurity Research and Development

Hitotsubashi, Chiyoda-ku, Tokyo 101-8430
1ruo@nii.ac.jp

Abstract— As distributed data storage has become widely
deployed, there is emerging demand of high performance
data pagination for handling huge volumes over multiple
shards.
Unfortunately, in contrast to recent rapid progress of rich-
feature bulk/scroll API, there have been few research efforts
on leveraging parallelism of NVMe SSD for building high
performance application of data pagination to its full
potential. We propose a new application of direct NVMe
access driven by sliced scroll for huge data pagination of
Elasticsearch. In our application, each task assigned with
unique scroll ID directly accesses NVMe SSD with LBA
calculation corresponding to the size of slice and JSON
object. Besides, direct NVMe access is driven by sliced scroll
with the 1-1 correspondence between slice and task. By doing
this, our application can eliminate READ latency
tremendously while evading the implementation and
deployment cost. In experiment, we have adopted SPDK perf
tool and measured READ/WRITE latency in huge data
pagination of Elasticsearch. Specifically, READ latency
reduction leads to a significant performance improvement in
huge JSON objects parsing. It turned out that our SPDK
based parser application can speed up the processing time
compared with one of native Linux threads by ranging from
x12.47 to x26.21 with the drastic reduction of READ latency
Keywords— Sclied scroll, NVM Express, data pagination,
Intel SPDK, user-mode I/O, Elasticsearch

I. INTRODUCTION

Scalability and capability to handle huge volumes of
data in near real-time is emerging demand by many
applications such as mobile apps, web, and data analytics
applications.

In particular, concerning big data analytics applications
of KV store and distributed data storage, data pagination
has become key technology. For example, a user of KV
store always needs more and more data either to render on
a page or to process in the backend.Accordingly, in recent
years, there have been rapid advances of helper API of
deep pagination in both KV store and distributed data
storage application such as Elasticsearch. However, on the
other hand, existing distributed data storage applications
cannot leverage NVMe SSD to its full potential for huge
data pagination. From our operational experience of
deploying distributed data storage [1], we have found two
bottlenecks in huge data pagination.

A. Bottleneck1: READ latency in huge pagination
1) Level-1 Heading: Data pagination is a functionality

that is needed most of the time, for example, returning a

large set of data to process in the backend or to simply re-
index from one index to another. JSON based data
pagination utility is alrealy adopted in popular KV store
and distributed search engine such as Redis[11],
MongoDB[12] and Elasticsearch[5] .

 Recently, the size of JSON objects in distributed data
storage is drastically increasing with an index of several
millions, billions or sometimes trillions documents.
Unfortunately, when trying to retrieve a large number of
documents, you often see that when getting more and
more with pages of the results, the queries slow down and
finally timeout or result in memory issues.As a solution
for this, Elasticsearch provides scroll-scan API[13] for
data pagination without scoring[2].

However, even utilizing scroll API in WRITE phase,
READ latency still remains serious pitfall in huge data
paginaiton. Table 1 shows our brief measurement of the
elapsed time of parsing paginated JSON objects with
varying the size of JSON objects.In this measurement, we
use conventional Linux I/O framework of fread() and
Jansson [9]. For this measurement, we use a Linux
machine equipped with Intel(R) Xeon(R) 6138 CPU @
2.00GHz and 512 GB of memory running Ubuntu 16.04.

TABLE I
ELAPSED TIME (SEC) IN PARSING JSON OBJECTS WITH LINUX STANDARD I/O

size of JSON objects READ latency Parsing

3,039 MB 52.03 0.184464
15,195 MB 257.06 0.186884

In Table 1, the size of JSON objects is varied from
about 3039 MB (1556 bytes * 2048 slices * 1000 lines) to
15195 MB (1556 bytes * 2048 slices * 5000 lines). In a
nutshell, slice represents the number of JSON objects in
one line of stream returned from Elasticsearch. As the size
of JSON objects are increasing, it become more obvious
that most of elapsed time is occupied by READ latency.
The main reason is that the processing time of JSON
parsing by Jansson keeps almost constant with around 0.18
sec with the size of JSON objects ranging from about
3,039 MB to 1,5195 MB, while READ latency is
increased by about 5 times. From this measurement, we
can obtain the insight that reducing READ latency is top
priority to be considered for building high performance
application using huge data pagination.

B. Bottleneck2: Deployment cost of user-mode FS
2) One way to eliminate the I/O stack overhead is to
enable user processes to directly access storage devices

ISSN:0975-9646

Ruo Ando / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (4) , 2020, 47-52

www.ijcsit.com 47

directly [7][4]. Because the kernel I/O stack accounts for a
large fraction in total I/O latency and the high resource
utilization of context switching. Consequently, some
application using user-space I/O framework have been
proposed to bypass the Linux block layer in high
performance application [17]. Although user-mode I/O
framework is effective in reducing I/O stack overheads,
sometimes it imposes great burden on applications.

Particularly, user-mode file system and block device
interface increase complexity in both driver and hardware
implementations. These are useful in specific situation,
but it often increases duplicate code across error-prone
driver implementations, and usually nullifies generic
features such as I/O scheduling and traffic shaping for
QoS that are provided by a generic OS storage layer. It is
expensive to make up for these utilities by additional
implementations.

C. Design goal
The design goal of our method is to reduce READ

latency occurred in handling huge data pagination with
simple and direct NVMe I/O submission. We adopt direct
NVMe access for avoiding the deployment cost of user-
mode file system and block device driver interface. Our
design concept is that more directly the application access
NVMe SSD, more effective the user-mode I/O framework
is for the application of huge data pagination.

II. SLICED SCROLL DRIVEN NVME I/O SUBMISSION

A. Basic Design
We leverage parallelism of NVMe SSD for accelerating

deep pagination of Elasticsearch. Figure 1 depicts our
method. As we will illustrate the detail later, sliced scroll
is multiple invocations of scroll API. In the upper side of
Figure 1, Elasticsearch deploys M shards and splits M
shards into N slices. For the response of bulk helper API
of sliced scroll, Elasticsearch generates scroll IDs. Then,
each task of SPDK of which ID is ranging from 1 to N
takes unique scroll ID in the middle part of Figure 1. Task
1-N holds the same scroll ID during its operation of data
pagination.

In other words, Task 1-N keeps retrieving JSON object
repeatedly with their scroll ID until there is no more
results left to return. At the lower side of Figure 1, in
NVMe layer, LBA is calculated for each task to submit
request I/O. LBA is calculated corresponding to the size
of (1) slice and (2) JSON object. LBA is uniquely assigned
to each task pipeline and incremented. The mechanism
shown in Figure 1 is based on the 1 to 1 corresponding
between task 1-N and slice 1-N by scroll ID.

Fig. 1 Sliced scroll driven NVMe I/O submission.

B. Scaling performance with sliced scroll
Elasticsearch provides a native API to scan and scroll

over indexes using a cursor and you can scroll over it [13].
Scroll API is not designed for real-time requests, but
rather for handling large volume of data, or in order to
reindex the contents of one index into a new index with a
different configuration or to process it in the backend.

Fig. 2 Sliced scroll over multiple shards

Scroll queries can be further improved by the technique
called as sliced scroll. By using sliced scroll, you can
parallelize the scroll invocations. Figure 2 depicts how
sliced scroll is built over multiple shards. Simply put,
sliced scroll is a form of query with N split indices over 4
multiple shards (from shard 1-1 to 2-2). If you have N
slices over 4 shards, as shown in Figure 2, you can
parallelize single-threaded scroll (over 4 shards) with N
threads. Instead of having a single thread to consume N *
4 hits, you can leverage the full computing power to
consume those hits. From our experiment, the performance
of sliced scroll can scale at least within 5-10 slices with
CPU @ 2.00GHz and 512GB memory.

Ruo Ando / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (4) , 2020, 47-52

www.ijcsit.com 48

B. Scaling performance with Intel SPDK
Our tool implementation is based on SPDK perf [15].

Conventionally, the fio tool [6] is widely used because of
its flexibility. However, that flexibility of fio causes
overhead and reduces the efficiency of SPDK.

Accordingly, SPDK is released as a new benchmarking
tool with minimal overhead during benchmarking. Figure
3 depicts the pipelines of task in our application based on
SPDK.

SPDK perf tool adopts task parallelism for handling
submission and completion queue. Generally, task
parallelism means lots of different. In this case,
independent tasks are working by splitting the data (the
indices over multiple shards as shown in Figure 3) they
consume. When you find task parallelism in SPDK perf, it
is a special kind referred to as pipelining. Each pipeline is
connecting I/O submission routine in the upper side of
Figure 3 to completion callbacks in the lower side. One
main difference between our application and SPDK perf is
that each task 1-N is corresponding to slice ID 1-N. Also
in the upper side of Figure 3, sliced_scroll() is invoked
inside nvme_submit_io() for fetching JSON objects to be
written to NVMe SSD.

Fig. 3 Task parallelism of SPDK perf.

III. IMPLEMENTATION IN DETAIL

A. Scroll ID and task allocation
For scroll scan, Elasticsearch has a special endpoint for

this API - the search/scroll endpoint. Endpoint returns the
JSON object as follows:

{"_scroll_id":"XXXXXXXX","took":YYY,
"hits":{"hits":[{"_index":"ZZZ",_source":{[]}}}

Every call to the endpoint with scroll_id returns the

next page of results. The _scroll_id section is a handle that
we will take in the following queries. This object is used
to get the actual data in subsequent requests. In the case
that scroll queries cope with a large number of documents,
it is possible to split the scroll in multiple slices which can

be consumed independently. We implemented query
builder/sender of scroll API by C Libcurl [8] as follows.

1: sprintf(post_data, "{"size": "%d",
"slice":"%d",
{"id":%d,"max":%d}}",
SLICE_SIZE, queue_depth,
slice_max);
2: struct curl_slist* headers = NULL;
3: headers = curl_slist_append(headers,
"Content-Type: application/json");
4: curl_easy_setopt(curl, CURLOPT_POSTFIELDS,
post_data);

At line 1, query string is built with three parameters:

slice_id, slice_max and slice_size. The string of post_data
at line 1 and 4 has three parameters as follows.

ID (slice ID): The ID of the slice. The result from the

first request returned documents that belong to the first
slice (id=0)

and the result from the second request returned
documents that belong to the second slice (id=1). Slice ID
is unique to task ID.

MAX (queue_depth): The maximum number of slices.
Or the number of slices into which the task split the
multiple shards.

SIZE (SLICE_SIZE): The size parameter allows you
to configure the maximum number of hits to be returned
with each batch of results.

Once the scroll_id is obtained from endpoint of

Elasticsearch, a task is newly allocated with unique scroll
ID (_scroll_id) and it will repeat querying with its scroll
ID until fetched results is empty. In other words, each call
of the scroll API returns the next batch of results until
there are no more results left to return. For embedding and
activating scroll ID into the pipeline of SPDK perf tool,
we have modified task structure as follows.

1: struct perf_task {
2: struct ns_worker_ctx *ns_ctx;
3: struct iovec iov;
4: struct iovec md_iov;
5: uint64_t submit_tsc;
6: bool is_read;
7: struct spdk_dif_ctx dif_ctx;
8: char scrollID[2048];
9: char JSON[SLICE_SIZE*JSON_SIZE];
10: int taskID;
11: #if HAVE_LIBAIO
12: struct iocb iocb;
13: #endif
14: };

We insert line 8-10 to handle queries / responses of the

data pagination of Elasticsearch. At line 8, scrollID[2048]
is an array for holding scroll ID uniquely assigned with
each task during the pagination. Line 9 of
JSON[SLICE_SIZE * JSON_SIZE] is a memory buffer

Ruo Ando / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (4) , 2020, 47-52

www.ijcsit.com 49

for storing JSON objects returned from Elasticsearch.
Task is identified by taskID at line 10. By adding line 8
and 10, each task of SPDK perf can be driven by sliced
scroll API with 1-1 correspondence between task and slice.

Fig. 4 Calculating LBA

B. Calculating LBA
In SPDK, the NVMe driver submits the I/O request

with LBA as an NVMe submission queue using
nvme_ns_cmd_xxx functions [15]. This function is
executed in asynchronous manner and returns immediately
before the command is completed.

1: rc = spdk_nvme_ns_cmd_write(ns_entry->ns,
2: ns_entry->qpair, sequence.buf,
3: N, /* LBA start */
4: 1, /* number of LBAs */
5: write_complete, &sequence, 0);

Here N at line 3 is the starting address of LBA, which is

incremented as each task submits request I/O. Before
calling nvme_ns_cmd_write(), LBA is calculated in
nvme_submit_io() as follows. As shown at line 7, LBA is
the product of offset_in_ios by entry->io_size_blocks.

1: static int
2: nvme_submit_io(struct perf_task *task,
3: struct ns_worker_ctx *ns_ctx,
4: struct ns_entry *entry,
5: uint64_t offset_in_ios)
5:{
6: uint64_t lba;
7: lba = offset_in_ios * entry->io_size_blocks;

Figure 4 shows the detailed illustration of the

calculation of LBA. LBA is the smallest addressable data
unit for READ and WRITE commands. LBA range is a
collection of contiguous logical blocks specified by a
starting LBA and number of logical blocks. More
specifically, LBA is the product of offset_in_ios by entry-
>io_size_blocks as shown at line 7. The first term on right
side, offset_in_ios, is incremented every time I/O
submission is issued by each task. The second term, entry-
>io_size_blocks, represents LBA range which is the
product of JSON_SIZE * SLICE_SIZE. For example, in
the case of Figure 4, we obtain JSON object of which size
is 1556 * 2048 = 3,186,688 bytes for every single I/O
submission which means that entry->io_size_blocks is
also 3,186,688 bytes.

C. JSON objects parsing in READ task completion
The application of SPDK adopts polled mode I/O

completion on each queue pair to receive completion
callbacks by calling
spdk_nvme_qpair_process_completions().
SPDK perf tool has seven routines in I/O task completion
starting from spdk_nvme_qpair_process_completions().
GDB stack trace of I/O task completion from
spdk_nvme_qpair_process_completions() to
task_complete() is as follows:

#0 task_complete (task)
#1 io_complete (ctx, cpl)
#2 nvme_complete_request (cb_fn<io_complete>,
cb_arg, qpair, req, cpl)
#3 nvme_pcie_qpair_complete_tracker (qpair,
tr, cpl, print_on_error=true)
#4 nvme_pcie_qpair_process_completions (qpair,
max_completions)
#5 nvme_transport_qpair_process_completions
(qpair, [max_completions)
#6 spdk_nvme_qpair_process_completions (qpair,
max_completions)

At frame #0, task_complete() takes the argument of

struct perf_task discussed in section 2.2.1. Consequently,
when the task_complete() is called at #0, we can obtain the
buffer storing JSON objects by referring the argument of
struct perf_task.

1: static inline void
2: task_complete(struct perf_task *task)
3: {
4: struct ns_worker_ctx *ns_ctx;
5: uint64_t tsc_diff;
6: struct ns_entry *entry;

7: if(!task->is_read) { /* WIRTE op */ }
8: else if(task->is_read) {
9: /* JSON stream parsing */
10: parse(task->dump)
11: submit_single_io(task);

The function of parse(task->dump) at line 10 is
implemented for parsing JSON objects. After the parsing
is finished, task_complete invokes submit_single_io(task)
at line 11 for repeating the invocation of scroll API until
there there are no more hits left to return.

IV. EVALUATION
We compare the performance results of our application

based on SPDK with one of native Pthreads. For all the
experiments, we use Dell PowerEdge R640, equipped with
Intel(R) Xeon(R) 6138 CPU @ 2.00GHz and 512 GB
RAM, running Ubuntu 16.04. All the performance
evaluations are performed on a commercial Intel Optane
SSD 905P 1.5TB NVMe SSD.

Ruo Ando / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (4) , 2020, 47-52

www.ijcsit.com 50

A. WRITE latency with scroll API
We compare WRITE latency in two cases: POSIX

Pthread using fwrite() and SPDK task using
nvme_ns_cmd_xxx function. For simplicity (excluding the
discussion about scalability about threads and tasks), we
set the number of both of native threads and SPDK tasks
to 2.

Then, the number of lines of all retrived data are set to
10,000. Finally, the size of one JSON object is set to 1556
bytes. Figure 5 shows the comparison of WRITE latency
with varying slice size from 1,024 to 3,072. In WRITE
phase, native thread (POSIX Pthread) is faster than SPDK
tasks by about 50 - 60%.

Fig. 5 WRITE latency (with varying slice size from 1024 to 3072 under

10,000 JSON objects).

B. READ latency with JSON parsing
We measure the elapsed time of parsing JSON objects in

using two interfaces: (1) direct READ access using SPDK
and (2)fread() of Linux I/O interface. As with WRITE
latency measurement, we set the number of both of native
threads and SPDK tasks to 2. Also, we set the number of
JSON_SIZE to 1556 bytes and slice sice to 2048. In
READ phase, we vary the number of lines N ranging from
1,000 to 10,000. %, which means SLICE_SIZE is the
parameter. Program fragment of JSON parsing is as
follows. At line 2 and 3, I/O vector is transferred to JSON
[SLICE_SIZE * JSON_SIZE] by strncpy(). At line 11-12,
the program enters the loop for parsing JSON objects.

1: char JSON[SLICE_SIZE * JSON_SIZE];
2: strncpy(JSON, (char*)task->iov.iov_base,
3: SLICE_SIZE * JSON_SIZE);
4: json_error_t error;
5: json_t *result = json_loads(JSON, 0, &error);
6: json_t *repositories
7: = json_object_get(result, "hits");
8: json_t *value;
9: const char *key;
10: json_t *value_source;
11: json_object_foreach
12: (repositories,key,value){ ... }

Fig. 6 Experimental setup in measuring READ latency (with 1,556 bytes

under JSON object).

Figure 6 depicts our experimental setting of parsing

JSON objects with NVMe direct access. For each I/O
request of READ, we obtain 2048 (slice_size) JSON
objects each of which size of 1,556 bytes. For example, if
we get JSON objects with the number of lines 10,000, we
fetched JSON objects of 1,556 (JSON size) * 2,048 (slice
size) * 10,000 (lines) bytes (about 31,866 MB) after all
I/O completion are done.

TABLE III
ELAPSED TIME (SEC) IN PARSING JSON STREAM(SEC)

of lines Pthread(2) SPDK task(2) speed up
1000 52.03 4.17 x12.47
2000 102.87 7.32 x14.05
3000 154.46 8.93 x17.29
4000 205.65 10.11 x20.32
5000 257.06 11.49 x22.37
6000 303.96 12.28 x24.75
7000 354.71 14.34 x24.69
8000 400.45 16.92 x24.39
9000 447.02 17.82 x25.08

10000 503.17 19.17 x26.21

Table 2 shows the elapsed time of parsing JSON objects.
We compare our SPDK based application using

nvme_ns_cmd_xxx function with Pthread based
application using fread(). For making the implication of
the measurement clear, we run 2 native threads (Pthreads)
and also 2 tasks (SPDK).

With the number of lines varying, we observe the
drastic improvement of the processing time ranging from
12.47x (# of lines 1,000) to 26.2x (# of lines 10,000). This
is because Direct NVMe access reduces the READ latency
tremendously while the elapsed time of parsing keeps
almost constant as shown in Table 1 in section 1.

V. RLEATED WORK
There have been many research efforts on reducing the

overheads the Kernel I/O stack. Shin et al. propose the
multi-context I/O paths for SSD [14]. In [14], it is
discussed that multi-context I/O paths can increase the I/O
latency due to the overhead of context switching. Using
polling instead of interrupts is another solution for
removing context switching from the I/O path [3].

In the optimization of I/O stacks in kernel space, rling
et al. [10] provide multiple queues on multi-cores to
improve the I/O performance on NVMe SSD. Zhang

Ruo Ando / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (4) , 2020, 47-52

www.ijcsit.com 51

provides new I/O path optimization to minimize the
overhead of I/O path for high priority tasks [19].

User-space filesystem is one of the most promising
research fields. Moneta-D [4], based on Moneta [3] which
is a flexible file-system architecture leveraging the
storage-class memory, presents user-space software stacks
to eliminate storage access latencies based on their own
private and virtualized interface. Aerie[16] is a flexible
user-level file system adopting the storage-class memory
for user applications to access hardware without kernel
interaction. EvFS[18] exposes asynchronous processing of
complex file I/O with page cache and direct I/O for
building a user-level storage stack.

VI. CONCLUSION

Scalability and capability to handle huge volumes of
data in near real-time is emerging demand by many
applications such as mobile apps, web, and data analytics
applications.

Concerning big data analytics applications of KV store
and distributed data storage, data pagination has become
key technology. In this paper, we have proposed sliced-
scroll driven direct NVMe access for huge pagination. The
main contributions of this paper as follows:

1). We have addressed the bottleneck in huge pagination
The most considerable bottleneck in huge data

pagination is disproportional READ latency. READ
latency reduction by our method leads to a significant
performance improvement of
huge JSON objects parsing. It turned out that our SPDK
based parser application can speed up the processing time
compared with one of native Linux threads by ranging
from x12.47 to x26.21 with the drastic reduction of READ
latency.

2). Direct access for minimizing the deployment cost
The thrust of our method is that task assigned with

unique scroll ID calculate LBA by itself and invokes
nvme_ns_cmd_xxx function directly in user space. By
doing this, NVMe I/O submission can be driven by sliced
scroll API inside our user-space application with minimal
implementation and deployment cost. It has become clear
that more directly the application access NVMe SSD,
more effective the user-mode I/O framework is for the
application in huge data pagination.

REFERENCES
[1] Ruo Ando. Multi-gpu accelerated processing of timeseries data of

huge academic backbone network in ELK stack. In 33rd Large
Installation System Administration Conference (LISA’19), Portland,
OR,October2019. USENIX Association.

[2] Marek Rogozinski Saurabh Chhajed. Bharvi Dixit, Rafal Kuc.
Elasticsearch: A complete guide, chapter 7.

[3] De A. Coburn J. Mollow T. I. GUPTA R. K. Caufield, A. M. and S
SWANSON. Moneta: A highperformance storage array architecture
for next-generation, non-volatile memories. In In Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO ’10), Atlanta, GA, USA, 2010.

[4] MollovT.I.EinserL.A.DeA.CoburnJ.Caufield,A.M. and S. Swanson.
Providing safe, user space access to fast, solid state disks. In In
Proceedings of ASPLOS (2012), 2012.

[5] Elasticsearch. https://github.com/elastic/elasticsearch.
[6] fioTool. https://fio.readthedocs.io/en/latest/fio_doc.html.
[7] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim.

Nvmedirect:Auser-spacei/oframeworkforapplicationspecific
optimization on nvme ssds. In 8th USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage 16), Denver, CO,
June 2016. USENIX Association.

[8] The libcurl API. https://curl.haxx.se/libcurl/c/.
[9] Jansson — C library for working with JSON data.

http://www.digip.org/jansson/.
[10] DavidNellansMatiasBjørling,JensAxboeandPhilippe Bonnet. Linux

block io: introducing multi-queue ssd access on multi-core systems.
In In Proceedings of the 6th International Systems and Storage
Conference (ACM), 2013.

[11] Redis: In memory data structure store. https://redis.io/.
[12] MongoDB. https://www.mongodb.com/.
[13] MarekRogozi´nski.RafałKu´c. Elasticsearchserver third edition,

chapter 8.
[14] Chen Q. Oh M. Eom H. Shin, W. and H. Y. Yeom. Os i/o path

optimizations for flash solid-state drives. In In Proceedings of
USENIX Annual Technical Conference (USENIX ATC ’14),
Philadelphia, PA, USA, 2014.

[15] SPDK. https://spdk.io/.
[16] Nalli S. Pannerselvam S. Varadarajan V. Saxena P. Volos, H. and

M. M. Swift. Aerie: Flexible file-system interfaces to storage-class
memory. In In Proceedings of Eurosys (2014), 2014.

[17] Minturn D. B. Yang, J. and F Hady. When poll is better than
interrupt.In USENIX conference on File and Storage
Technologies(FAST ’12), San Jose, CA, USA, 2012.

[18] Takeshi Yoshimura, Tatsuhiro Chiba, and Hiroshi Horii. Evfs:
User-level, event-driven file system for nonvolatile memory. In
11th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 19), Renton, WA, July 2019. USENIX
Association.

[19] JieZhang,Miryeong Kwon,Donghyun Gouk,Sungjoon Koh,
Changlim Lee, Mohammad Alian, Myoungjun Chun, Mahmut
Taylan Kandemir, Nam Sung Kim, Jihong Kim, and Myoungsoo
Jung. Flashshare: Punching through server storage stack from
kernel to firmware for ultra-low latency ssds. In 13th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI18),pages477–492,Carlsbad,CA,October2018. USENIX
Association.

Ruo Ando / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (4) , 2020, 47-52

www.ijcsit.com 52

https://github.com/elastic/elasticsearch
https://curl.haxx.se/libcurl/c/
http://www.digip.org/jansson/
https://redis.io/

