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Abstract— As distributed data storage has become widely 
deployed, there is emerging demand of high performance 
data pagination for handling huge volumes over multiple 
shards.  
Unfortunately, in contrast to recent rapid progress of rich-
feature bulk/scroll API, there have been few research efforts 
on leveraging parallelism of NVMe SSD for building high 
performance application of data pagination to its full 
potential. We propose a new application of direct NVMe 
access driven by sliced scroll for huge data pagination of 
Elasticsearch. In our application, each task assigned with 
unique scroll ID directly accesses NVMe SSD with LBA 
calculation corresponding to the size of slice and JSON 
object. Besides, direct NVMe access is driven by sliced scroll 
with the 1-1 correspondence between slice and task. By doing 
this, our application can eliminate READ latency 
tremendously while evading the implementation and 
deployment cost. In experiment, we have adopted SPDK perf 
tool and measured READ/WRITE latency in huge data 
pagination of Elasticsearch. Specifically, READ latency 
reduction leads to a significant performance improvement in 
huge JSON objects parsing. It turned out that our SPDK 
based parser application can speed up the processing time 
compared with one of native Linux threads by ranging from 
x12.47 to x26.21 with the drastic reduction of READ latency 
Keywords— Sclied scroll, NVM Express, data pagination, 
Intel SPDK, user-mode I/O, Elasticsearch 

I. INTRODUCTION

Scalability and capability to handle huge volumes of 
data in near real-time is emerging demand by many 
applications such as mobile apps, web, and data analytics 
applications.  

In particular, concerning big data analytics applications 
of KV store and distributed data storage, data pagination 
has become key technology. For example, a user of KV 
store always needs more and more data either to render on 
a page or to process in the backend.Accordingly, in recent 
years, there have been rapid advances of helper API of 
deep pagination in both KV store and distributed data 
storage application such as Elasticsearch. However, on the 
other hand, existing distributed data storage applications 
cannot leverage NVMe SSD to its full potential for huge 
data pagination. From our operational experience of 
deploying distributed data storage [1], we have found two 
bottlenecks in huge data pagination. 

A. Bottleneck1: READ latency in huge pagination
1) Level-1 Heading: Data pagination is a functionality

that is needed most of the time, for example, returning a 

large set of data to process in the backend or to simply re-
index from one index to another. JSON based data 
pagination utility is alrealy adopted in popular KV store 
and distributed search engine such as Redis[11], 
MongoDB[12] and Elasticsearch[5] . 

 Recently, the size of JSON objects in distributed data 
storage is drastically increasing with an index of several 
millions, billions or sometimes trillions documents. 
Unfortunately, when trying to retrieve a large number of 
documents, you often see that when getting more and 
more with pages of the results, the queries slow down and 
finally timeout or result in memory issues.As a solution 
for this, Elasticsearch provides scroll-scan API[13] for 
data pagination without scoring[2]. 

However, even utilizing scroll API in WRITE phase, 
READ latency still remains serious pitfall in huge data 
paginaiton. Table 1 shows our brief measurement of the 
elapsed time of parsing paginated JSON objects with 
varying the size of JSON objects.In this measurement,  we 
use conventional Linux I/O framework of fread() and 
Jansson [9]. For this measurement, we use a Linux 
machine equipped with Intel(R) Xeon(R) 6138 CPU @ 
2.00GHz and 512 GB of memory running Ubuntu 16.04.  

TABLE I 
ELAPSED TIME (SEC) IN PARSING JSON OBJECTS WITH LINUX STANDARD I/O 

size of JSON objects READ latency Parsing 

3,039 MB 52.03 0.184464 
15,195 MB 257.06 0.186884 

In Table 1, the size of JSON objects is varied from 
about 3039 MB (1556 bytes * 2048 slices * 1000 lines) to 
15195 MB (1556 bytes * 2048 slices * 5000 lines). In a 
nutshell, slice represents the number of JSON objects in 
one line of stream returned from Elasticsearch. As the size 
of JSON objects are increasing, it become more obvious 
that most of elapsed time is occupied by READ latency. 
The main reason is that the processing time of JSON 
parsing by Jansson keeps almost constant with around 0.18 
sec with the size of JSON objects ranging from about 
3,039 MB to 1,5195 MB, while READ latency is 
increased by about 5 times. From this measurement, we 
can obtain the insight that reducing READ latency is top 
priority to be considered for building high performance 
application using huge data pagination. 

B. Bottleneck2: Deployment cost of user-mode FS
2) One way to eliminate the I/O stack overhead is to
enable user processes to directly access storage devices
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directly [7][4]. Because the kernel I/O stack accounts for a 
large fraction in total I/O latency and the high resource 
utilization of context switching.  Consequently, some 
application using user-space I/O framework have been 
proposed to bypass the Linux block layer in high 
performance application [17]. Although user-mode I/O 
framework is effective in reducing I/O stack overheads, 
sometimes it imposes great burden on applications.  

Particularly, user-mode file system and block device 
interface increase complexity in both driver and hardware 
implementations.  These are useful in specific situation, 
but it often increases duplicate code across error-prone 
driver implementations, and usually nullifies generic 
features such as I/O scheduling and traffic shaping for 
QoS that are provided by a generic OS storage layer. It is 
expensive to make up for these utilities by additional 
implementations. 
 

C. Design goal 
The design goal of our method is to reduce READ 

latency occurred in handling huge data pagination with 
simple and direct NVMe I/O submission. We adopt direct 
NVMe access for avoiding the deployment cost of user-
mode file system and block device driver interface. Our 
design concept is that more directly the application access 
NVMe SSD, more effective the user-mode I/O framework 
is for the application of huge data pagination. 

 

II. SLICED SCROLL DRIVEN NVME I/O SUBMISSION 

A. Basic Design 
We leverage parallelism of NVMe SSD for accelerating 

deep pagination of Elasticsearch. Figure 1 depicts our 
method. As we will illustrate the detail later, sliced scroll 
is multiple invocations of scroll API. In the upper side of 
Figure 1, Elasticsearch deploys M shards and splits M 
shards into N slices. For the response of bulk helper API 
of sliced scroll, Elasticsearch generates scroll IDs. Then, 
each task of SPDK of which ID is ranging from 1 to N 
takes unique scroll ID in the middle part of Figure 1. Task 
1-N holds the same scroll ID during its operation of data 
pagination.  

In other words, Task 1-N keeps retrieving JSON object 
repeatedly with their scroll ID until there is no more 
results left to return. At the lower side of Figure 1, in 
NVMe layer, LBA is calculated for each task to submit 
request I/O.  LBA is calculated corresponding to the size 
of (1) slice and (2) JSON object. LBA is uniquely assigned 
to each task pipeline and incremented.  The mechanism 
shown in Figure 1 is based on the 1 to 1 corresponding 
between task 1-N and slice 1-N by scroll ID. 
 

 
Fig. 1   Sliced scroll driven NVMe I/O submission.  

 

B. Scaling performance with sliced scroll  
Elasticsearch provides a native API to scan and scroll 

over indexes using a cursor and you can scroll over it [13]. 
Scroll API is not designed for real-time requests, but 
rather for handling large volume of data, or in order to 
reindex the contents of one index into a new index with a 
different configuration or to process it in the backend. 

 

 
Fig. 2   Sliced scroll over multiple shards 

Scroll queries can be further improved by the technique 
called as sliced scroll. By using sliced scroll, you can 
parallelize the scroll invocations.  Figure 2 depicts how 
sliced scroll is built over multiple shards.  Simply put, 
sliced scroll is a form of query with N split indices over 4 
multiple shards (from shard 1-1 to 2-2).  If you have N 
slices over 4 shards, as shown in Figure 2, you can 
parallelize single-threaded scroll (over 4 shards) with N 
threads. Instead of having a single thread to consume N * 
4 hits, you can leverage the full computing power to 
consume those hits. From our experiment, the performance 
of sliced scroll can scale at least within 5-10 slices with 
CPU @ 2.00GHz and 512GB memory. 
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B. Scaling performance with Intel SPDK 
Our tool implementation is based on SPDK perf [15]. 

Conventionally, the fio tool [6] is widely used because of 
its flexibility. However, that flexibility of fio causes 
overhead and reduces the efficiency of SPDK.  

Accordingly, SPDK is released as a new benchmarking 
tool with minimal overhead during benchmarking. Figure 
3 depicts the pipelines of task in our application based on 
SPDK. 

SPDK perf tool adopts task parallelism for handling 
submission and completion queue. Generally, task 
parallelism means lots of different. In this case, 
independent tasks are working by splitting the data (the 
indices over multiple shards as shown in Figure 3) they 
consume. When you find task parallelism in SPDK perf, it 
is a special kind referred to as pipelining. Each pipeline is 
connecting I/O submission routine in the upper side of 
Figure 3 to completion callbacks in the lower side. One 
main difference between our application and SPDK perf is 
that each task 1-N is corresponding to slice ID 1-N. Also 
in the upper side of Figure 3, sliced_scroll() is invoked 
inside nvme_submit_io() for fetching JSON objects to be 
written to NVMe SSD. 
 

 
Fig. 3 Task parallelism of SPDK perf. 

 

III. IMPLEMENTATION IN DETAIL  

A. Scroll ID and task allocation 
For scroll scan, Elasticsearch has a special endpoint for 

this API - the search/scroll endpoint. Endpoint returns the 
JSON object as follows: 
 

{"_scroll_id":"XXXXXXXX","took":YYY, 
"hits":{"hits":[{"_index":"ZZZ",_source":{[]}}} 

 
Every call to the endpoint with scroll_id returns the 

next page of results. The _scroll_id section is a handle that 
we will take in the following queries. This object is used 
to get the actual data in subsequent requests. In the case 
that scroll queries cope with a large number of documents, 
it is possible to split the scroll in multiple slices which can 

be consumed independently. We implemented query 
builder/sender of scroll API by C Libcurl [8] as follows.  

 
1: sprintf(post_data, "{"size": "%d", 
"slice":"%d", 
{"id":%d,"max":%d}}",  
SLICE_SIZE, queue_depth,  
slice_max); 
2: struct curl_slist* headers = NULL;  
3: headers = curl_slist_append(headers,  
"Content-Type: application/json");  
4: curl_easy_setopt(curl, CURLOPT_POSTFIELDS,  
post_data);  

 
At line 1, query string is built with three parameters: 

slice_id, slice_max and slice_size. The string of post_data 
at line 1 and 4 has three parameters as follows. 

 
ID (slice ID): The ID of the slice. The result from the 

first request returned documents that belong to the first 
slice (id=0)  

and the result from the second request returned 
documents that belong to the second slice (id=1). Slice ID 
is unique to task ID. 

MAX (queue_depth): The maximum number of slices. 
Or the number of slices into which the task split the 
multiple shards.  

SIZE (SLICE_SIZE): The size parameter allows you 
to configure the maximum number of hits to be returned 
with each batch of results.  

 
Once the scroll_id is obtained from endpoint of 

Elasticsearch, a task is newly allocated with unique scroll 
ID (_scroll_id) and it will repeat querying with its scroll 
ID until fetched results is empty. In other words, each call 
of the scroll API returns the next batch of results until 
there are no more results left to return. For embedding and 
activating scroll ID into the pipeline of SPDK perf tool, 
we have modified task structure as follows. 

 
1: struct perf_task {  
2: struct ns_worker_ctx *ns_ctx;  
3: struct iovec iov;  
4: struct iovec md_iov;  
5: uint64_t submit_tsc;  
6: bool is_read;  
7: struct spdk_dif_ctx dif_ctx;  
8: char scrollID[2048];  
9: char JSON[SLICE_SIZE*JSON_SIZE];  
10: int taskID;  
11: #if HAVE_LIBAIO  
12: struct iocb iocb;  
13: #endif  
14: };  
 
We insert line 8-10 to handle queries / responses of the 

data pagination of Elasticsearch. At line 8, scrollID[2048] 
is an array for holding scroll ID uniquely assigned with 
each task during the pagination. Line 9 of 
JSON[SLICE_SIZE * JSON_SIZE] is a memory buffer 
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for storing JSON objects returned from Elasticsearch.  
Task is identified by taskID at line 10. By adding line 8 
and 10, each task of SPDK perf can be driven by sliced 
scroll API with 1-1 correspondence between task and slice. 

 

 
Fig. 4   Calculating LBA 

 

B. Calculating LBA 
In SPDK, the NVMe driver submits the I/O request 

with LBA as an NVMe submission queue using 
nvme_ns_cmd_xxx functions [15]. This function is 
executed in asynchronous manner and returns immediately 
before the command is completed.  

 
1: rc = spdk_nvme_ns_cmd_write(ns_entry->ns,  
2: ns_entry->qpair, sequence.buf, 
3: N, /* LBA start */ 
4: 1, /* number of LBAs */ 
5: write_complete, &sequence, 0); 
 
Here N at line 3 is the starting address of LBA, which is 

incremented as each task submits request I/O. Before 
calling nvme_ns_cmd_write(), LBA is calculated in 
nvme_submit_io() as follows. As shown at line 7, LBA is 
the product of offset_in_ios by entry->io_size_blocks. 

 
1: static int 
2: nvme_submit_io(struct perf_task *task,  
3: struct ns_worker_ctx *ns_ctx, 
4: struct ns_entry *entry,  
5: uint64_t offset_in_ios) 
5:{ 
6: uint64_t lba;  
7: lba = offset_in_ios * entry->io_size_blocks; 

 
Figure 4 shows the detailed illustration of the 

calculation of LBA. LBA is the smallest addressable data 
unit for READ and WRITE commands. LBA range is a 
collection of contiguous logical blocks specified by a 
starting LBA and number of logical blocks. More 
specifically, LBA is the product of offset_in_ios by entry-
>io_size_blocks as shown at line 7. The first term on right 
side, offset_in_ios, is incremented every time I/O 
submission is issued by each task. The second term, entry-
>io_size_blocks, represents LBA range which is the 
product of JSON_SIZE * SLICE_SIZE. For example, in 
the case of Figure 4, we obtain JSON object of which size 
is 1556 * 2048 = 3,186,688 bytes for every single I/O 
submission which means that entry->io_size_blocks is 
also 3,186,688 bytes. 

C. JSON objects parsing in READ task completion 
The application of SPDK adopts polled mode I/O 

completion on each queue pair to receive completion 
callbacks by calling 
spdk_nvme_qpair_process_completions(). 
SPDK perf tool has seven routines in I/O task completion 
starting from spdk_nvme_qpair_process_completions(). 
GDB stack trace of I/O task completion from 
spdk_nvme_qpair_process_completions() to 
task_complete() is as follows: 

 
#0 task_complete (task)  
#1 io_complete (ctx, cpl) 
#2 nvme_complete_request (cb_fn<io_complete>,  
cb_arg, qpair, req, cpl)  
#3 nvme_pcie_qpair_complete_tracker (qpair,  
tr, cpl, print_on_error=true) 
#4 nvme_pcie_qpair_process_completions (qpair,  
max_completions)  
#5 nvme_transport_qpair_process_completions  
(qpair, [max_completions) 
#6 spdk_nvme_qpair_process_completions (qpair,  
max_completions) 
 
At frame #0, task_complete() takes the argument of 

struct perf_task discussed in section 2.2.1. Consequently, 
when the task_complete() is called at #0, we can obtain the 
buffer storing JSON objects by referring the argument of 
struct perf_task. 

 
1: static inline void  
2: task_complete(struct perf_task *task)  
3: {  
4: struct ns_worker_ctx *ns_ctx;  
5: uint64_t tsc_diff;  
6: struct ns_entry *entry; 
 
7: if(!task->is_read) { /* WIRTE op */ } 
8: else if(task->is_read) {  
9: /* JSON stream parsing */ 
10: parse(task->dump) 
11: submit_single_io(task); 
 

The function of parse(task->dump) at line 10 is 
implemented   for parsing JSON objects. After the parsing 
is finished, task_complete invokes submit_single_io(task) 
at line 11 for repeating the invocation of scroll API until 
there there are no more hits left to return. 

IV. EVALUATION 
We compare the performance results of our application 

based on SPDK with one of native Pthreads. For all the 
experiments, we use Dell PowerEdge R640, equipped with 
Intel(R) Xeon(R) 6138 CPU @ 2.00GHz and 512 GB 
RAM, running Ubuntu 16.04. All the performance 
evaluations are performed on a commercial Intel Optane 
SSD 905P 1.5TB NVMe SSD. 
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A. WRITE latency with scroll API 
We compare WRITE latency in two cases: POSIX 

Pthread using fwrite() and SPDK task using 
nvme_ns_cmd_xxx function. For simplicity (excluding the 
discussion about scalability about threads and tasks), we 
set the number of both of native threads and SPDK tasks 
to 2. 

Then, the number of lines of all retrived data are set to 
10,000. Finally, the size of one JSON object is set to 1556 
bytes.  Figure 5 shows the comparison of WRITE latency 
with varying slice size from 1,024 to 3,072. In WRITE 
phase, native thread (POSIX Pthread) is faster than SPDK 
tasks by about 50 - 60%. 
 

 
Fig. 5  WRITE latency (with varying slice size from 1024 to 3072 under 

10,000 JSON objects). 

 

B. READ latency with JSON parsing 
We measure the elapsed time of parsing JSON objects in 

using two interfaces: (1) direct READ access using SPDK 
and (2)fread() of Linux I/O interface. As with WRITE 
latency measurement, we set the number of both of native 
threads and SPDK tasks to 2. Also, we set the number of 
JSON_SIZE to 1556 bytes and slice sice to 2048. In 
READ phase, we vary the number of lines N ranging from 
1,000 to 10,000. %, which means SLICE_SIZE is the 
parameter. Program fragment of JSON parsing is as 
follows. At line 2 and 3, I/O vector is transferred to JSON 
[SLICE_SIZE * JSON_SIZE] by strncpy(). At line 11-12, 
the program enters the loop for parsing JSON objects. 
 

1: char JSON[SLICE_SIZE * JSON_SIZE]; 
2: strncpy(JSON, (char*)task->iov.iov_base,  
3: SLICE_SIZE * JSON_SIZE); 
4: json_error_t error; 
5: json_t *result = json_loads(JSON, 0, &error); 
6: json_t *repositories  
7: = json_object_get(result, "hits"); 
8: json_t *value; 
9: const char *key;  
10: json_t *value_source;  
11: json_object_foreach 
12: (repositories,key,value){ ... } 

 

 
Fig. 6  Experimental setup in measuring READ latency (with 1,556 bytes 

under JSON object). 

 
Figure 6 depicts our experimental setting of parsing 

JSON objects with NVMe direct access. For each I/O 
request of READ, we obtain 2048 (slice_size) JSON 
objects each of which size of 1,556 bytes. For example, if 
we get JSON objects with the number of lines 10,000, we 
fetched JSON objects of 1,556 (JSON size) * 2,048 (slice 
size) * 10,000 (lines) bytes (about 31,866 MB) after all 
I/O completion are done. 
 

TABLE III 
ELAPSED TIME (SEC) IN PARSING JSON STREAM(SEC) 

# of lines Pthread(2) SPDK task(2) speed up 
1000 52.03 4.17 x12.47 
2000 102.87 7.32 x14.05 
3000 154.46 8.93 x17.29 
4000 205.65 10.11 x20.32 
5000 257.06 11.49 x22.37 
6000 303.96 12.28 x24.75 
7000 354.71 14.34 x24.69 
8000 400.45 16.92 x24.39 
9000 447.02 17.82 x25.08 

10000 503.17 19.17 x26.21 
 

Table 2 shows the elapsed time of parsing JSON objects. 
We compare our SPDK based application using 

nvme_ns_cmd_xxx function with Pthread based 
application using fread(). For making the implication of 
the measurement clear, we run 2 native threads (Pthreads) 
and also 2 tasks (SPDK). 

With the number of lines varying, we observe the 
drastic improvement of the processing time ranging from 
12.47x (# of lines 1,000) to 26.2x (# of lines 10,000). This 
is because Direct NVMe access reduces the READ latency 
tremendously while the elapsed time of parsing keeps 
almost constant as shown in Table 1 in section 1. 
 

V. RLEATED WORK 
There have been many research efforts on reducing the 

overheads the Kernel I/O stack.  Shin et al. propose the 
multi-context I/O paths for SSD [14]. In [14], it is 
discussed that multi-context I/O paths can increase the I/O 
latency due to the overhead of context switching. Using 
polling instead of interrupts is another solution for 
removing context switching from the I/O path [3].  

In the optimization of I/O stacks in kernel space, rling 
et al. [10] provide multiple queues on multi-cores to 
improve the I/O performance on NVMe SSD. Zhang 
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provides new I/O path optimization to minimize the 
overhead of I/O path for high priority tasks [19]. 

User-space filesystem is one of the most promising 
research fields.  Moneta-D [4], based on Moneta [3] which 
is a flexible file-system architecture leveraging the 
storage-class memory, presents user-space software stacks 
to eliminate storage access latencies based on their own 
private and virtualized interface. Aerie[16] is a flexible 
user-level file system adopting the storage-class memory 
for user applications to access hardware without kernel 
interaction. EvFS[18] exposes asynchronous processing of 
complex file I/O with page cache and direct I/O for 
building a user-level storage stack. 

VI. CONCLUSION

Scalability and capability to handle huge volumes of 
data in near real-time is emerging demand by many 
applications such as mobile apps, web, and data analytics 
applications.  

Concerning big data analytics applications of KV store 
and distributed data storage, data pagination has become 
key technology. In this paper, we have proposed sliced-
scroll driven direct NVMe access for huge pagination. The 
main contributions of this paper as follows: 

1). We have addressed the bottleneck in huge pagination 
The most considerable bottleneck in huge data 

pagination is disproportional READ latency. READ 
latency reduction by our method leads to a significant 
performance improvement of 
huge JSON objects parsing. It turned out that our SPDK 
based parser application can speed up the processing time 
compared with one of native Linux threads by ranging 
from x12.47 to x26.21 with the drastic reduction of READ 
latency. 

2). Direct access for minimizing the deployment cost 
The thrust of our method is that task assigned with 

unique scroll ID calculate LBA by itself and invokes 
nvme_ns_cmd_xxx function directly in user space. By 
doing this, NVMe I/O submission can be driven by sliced 
scroll API inside our user-space application with minimal 
implementation and deployment cost. It has become clear 
that more directly the application access NVMe SSD, 
more effective the user-mode I/O framework is for the 
application in huge data pagination. 
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